Abstract
Speckle size plays an important role in speckle-based 3D measurement systems. In real-time systems, frequent speckle size variation may be required as the object goes out of the specified range or the camera aperture has to be adjusted to observe the optimal speckle size on the image plane. In this paper, we present a system that adapts itself to achieve the desired speckle size when the measuring distance is changed. The system uses a motorized stage to vary the distance of the diffuser and the observation plane to change the speckle size which is calculated in real time. The performance of the proposed system is compared with the conventional speckle pattern and the result indicates that the proposed speckle method substantially improves the optimal range of the measurement system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M. Schaffer, M. Grosse, R. Kowarschik, High-speed pattern projection for three-dimensional shape measurement using laser speckles. Appl. Opt. 49(18), 3622–3629 (2010)
S. Heist, P. Lutzke, P. Dietrich, P. Kühmstedt, G. Notni, Experimental comparison of laser speckle projection and array projection for high-speed 3D measurements, in Optical Measurement Systems for Industrial Inspection IX, 2015. International Society for Optics and Photonics, p. 952515
D. Khan, M.A. Shirazi, M.Y. Kim, Single shot laser speckle based 3D acquisition system for medical applications. Opt. Lasers Eng. 105, 43–53 (2018). https://doi.org/10.1016/j.optlaseng.2018.01.001
G. Crammond, S. Boyd, J. Dulieu-Barton, Speckle pattern quality assessment for digital image correlation. Opt. Lasers Eng. 51(12), 1368–1378 (2013)
M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, D. Dirksen, Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology. Biomed. Opt. Express 6(12), 4825–4840 (2015)
H. Lin, Speckle Mechanism in Holographic Optical Coherence Imaging (University of Missouri–Columbia, 2009)
Acknowledgements
This work was supported by the DGIST R&D Program of the Ministry of Science, ICT and Future Planning (17-ST-01).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Khan, D., Kim, M.Y. (2019). Self-adaptive Speckle Pattern Based 3D Measurement System. In: MartÃnez-GarcÃa, A., Bhattacharya, I., Otani, Y., Tutsch, R. (eds) Progress in Optomechatronic Technologies . Springer Proceedings in Physics, vol 233. Springer, Singapore. https://doi.org/10.1007/978-981-32-9632-9_3
Download citation
DOI: https://doi.org/10.1007/978-981-32-9632-9_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-32-9631-2
Online ISBN: 978-981-32-9632-9
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)