메뉴
닫기


A 3D Map Update Algorithm based on Removal of Detected Object using Camera and Lidar Sensor Fusion
Year of publication
2021
Author
Gyeong-Ro Rhee, Min Young Kim
Journal
Journal of Institute of Control, Robotics and Systems
volume
27
Issue
11
Page
883-889

With the rapidly increasing research interest in autonomous vehicles, map update systems have become crucial. In the existing method, the original map is compared with the sensor data, and the newly changed map data is updated unconditionally. However, this is a simple iterative updating method that cannot distinguishing the landmarks (e.g., building, crosswalk, etc.). In this study, objects (i.e., people, cars, etc.) that are not related to the map are detected using the deep learning technique. The objects are excluded from the 3D data using a camera and LidarDAR sensor fusion. The remaining undetected 3D data is compared with the map data, and the map is updated by adding new landmarks and simultaneously removing the missing landmarks. The location accuracy is increased by localization based on the updated map. Compared to the original map, this proposed deep-learning-based method can reduces the error by up to 1.5 m. Thus, this proposed method is expected to aid in the advancement of the map update system.



[702-701] 1370 Sankyuk-dong, Buk-gu, Daegu, Korea
Tel : +82-53-950-7233 / Fax : +82-53-950-5505
Copyrights ⒞ 2019 Kyungpook National University. All Rights Reserved.